Fuzzy Optimal Control under Generalized Differentiability of Fuzzy-number-valued Functions
نویسنده
چکیده
In this paper optimal control problem of fuzzy linear time invariant systems is considered. Determining of system optimal input with minimizing quadratic integral criterion by using Pontryagin Minimum Principle will make the Fuzzy Partial Differential Equations [FPDEs] system solve the problem. The quality of obtaining system optimal input by solving the FPDEs system has been studied based on new definition of fuzzy functions differentiability. Finally, some examples illustrate the proposed method.
منابع مشابه
Application of iterative method for solving fuzzy Bernoulli equation under generalized H-differentiability
In this paper, the Picard method is proposed to solve the Bernoulli equation with fuzzy initial condition under generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed method are proved in details. Finally an example shows the accuracy of this method.
متن کاملSolving fuzzy differential equations by using Picard method
In this paper, The Picard method is proposed to solve the system of first-order fuzzy differential equations $(FDEs)$ with fuzzy initial conditions under generalized $H$-differentiability. Theexistence and uniqueness of the solution and convergence of theproposed method are proved in details. Finally, the method is illustrated by solving some examples.
متن کاملEXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can b...
متن کاملFirst order linear fuzzy dynamic equations on time scales
In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.
متن کاملThe fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کامل